

VINNOVA

Smart and Secure Gateways for a Secure Internet of Things

Mötesplats Avancerad Digitalisering 2023

Joakim Eriksson, RISE Mohammad Riazati, Imsys 2023-05-26

Smart and Secure IoT Gatway

- Project Duration 2021-07-01 2023-12-31
- Partners
 - **RISE** project lead and use-case provider: IoT wireless device fingerprinting
 - **Uppsala University** research and development of security mechanisms for the AI accelerator
 - Imsys design and implementation of secure AI accelerator
 - **IoT Bridge** IoT company use-case provider: Bridge Safety IoT application using the AI accelerator
 - Wittra IoT company use-case provides: Secure IoT for asset tracking and asset lock system
- Main contribution
 - Smart and Secure IoT Gateway based on Imsys Alice AI-accelerator
 - Use-cases evaluating Imsys AI accelerator
 - Energy-efficient AI at the extreme edge

Al Acceleration in SecureGW

Mohammad Riazati Senior Al Software Engineer

Imsys take on AI acceleration

ຳ<mark>msys</mark>

Why inference at the edge?

- Self-Contained (mission criticality)
- Resource restricted
- Fast response
- Lot of data

AI in smart sensors or aggregation point

Imsys Alice accelerator

High throughput, 10 TOP/S

Energy efficiency, 4 TOP/J

Scalable and programmable

Alice Accelerator Platform Architecture

• Many-Processor Architecture

- Processing Element Clusters
 - Shared memory
 - 16 Processing Elements each with 8 MAC units.
- Network on chip
 - High speed transport between I/O and PEC
 - Data exchange between PECs
- Prepared for tiling and inclusion in a system on chip
- Tools support to avoid the use of caches.

The General-Purpose Processor

- Sequences the model execution
 - Using the Deep Neural Network Instruction Set of the PEC
 - Using the NoC data transport and switching capabilities.
- The GPP can act in cooperation with a system processor in a host system, like the Secure GW, or manage the whole application on a smart sensor.
- 1/0
 - External memory and highspeed interfaces (PCIe, USB4.0, etc.)
- Energy manager (EM)
 - Sleep modes
 - Performance (Supply voltage versus clock speed)
 - External power source (Manage energy bursts for battery operated devices)

Deep Neural Network Instruction Set (ISA-A)

GPP: General-Purpose Processor EM: Energy Manager PEC: Processing Element Clusters ISA-A: Instruction Set Architecture for Accelerators

The accelerator in this project

- Accelerator on Simulator and Emulator made available.
- Security architecture introduced.
- Firmware to execute application models efficiently upgraded.
- Automation tools for model implementation adapted.

ຳmsys

The Imsys Accelerator Design for Low energy

DSD 2018 AMDL Keynote, Prof. Dr. Henk Corporaal

Sources of energy consumption challenging the system solution

Don't move data around

- Automated tools for data flow analysis
- Cache-less memory access
- Data reuse
- Processing near memory

Efficient processing

- Lean data types (uint8 most efficient)
- Low power circuit design matching architecture and advanced technology nodes^{*} for system on chip implementation.

Automated application optimization

- Minimize memory usage & maximize utilization
- Layer fusion, zero pruning, operator fusion, ...

Ouantized models

proved to have same

precision to less than a

quarter of the energy.

SecureGW demonstrator platform

Optimizer, Compiler, and Runtime

- Supports development flow from inference model graph to optimized target object code, which is used by the GPP to execute the model
- Quantization support
 - Training aware
 - Post training

°msys

- Customizable optimization
 - pipelining, layer fusing, memory usage ...
- Seamlessly integrates with existing AI development frameworks

Accelerator on pre-production chip in follow-up project for interested participants

SDK for extending the DNN Instruction set (ISA-A)

• ISA-A:

- Instruction Set Architecture for Accelerators
- Library of instructions
 - Extensive instructions for quantized neural network operations and other kernel-based operations, e.g., FFT
- Programmable user customization
- The project's three validation use-cases has resulted in new optimizations and kernel library extensions.

ຳ<mark>msys</mark>

SecureGW use-case verification

Verification of models

۹msys

- Simulated in floating point and quantized to 8-bit integers
- Different configurations 1, 4 and 16 clusters
- Different optimizations analyzed

Emulator + Application use-cases on HW

Application

✓ Presentation and input on Host PC

Processing elements

- ✓ 4 PEC configuration. (64 PE = \sim 150 GOP/s)
- ✓ Micro coded DNN operations (ISA-A firmware)
- ✓ Full stack SW on GPP (IM4000)

Security

✓ SecureGW memory protection HW for secure and performant high-speed memory accesses

High-speed data transfer

- ✓ DRAM
- ✓ Ethernet

ຳ<mark>msys</mark>

Security solution demonstrated in SecureGW

Secure Accelerator Memory (DDR):

•Confidentiality: AES Encryption

•Integrity: Hash-based Message Authentication Codes (SHA3 HMACs)

DDR

SecureGW approach:

- Large Securable Objects (LSO): AES & HMACs per **large objects** (e.g., tensor fragments or whole tensors)
- Tailored to the Alice memory access patterns
- Eliminates (almost all) memory overhead
- Is fully pipelined (latency only at beginning & end of the LSO read)
- General random access to blocks (parts of an LSO) is also supported, with 25% memory overhead.

- Same HW for read and write
 - on the FPGA demonstrator platform
 - but programmed differently.
- Confidentiality
 - ensures even if data is stolen it is secure.
- Integrity
 - checks for any changes in the data during transit.
 - We know that what we read is what we wrote.

SecureGW Design: Integrity

Pipelined Hash Ensemble Engine (3 x dual-64bit cores)

IoT authentication application

More Precision degradation with different chipsets

- **Problem:** Complex cryptographic solutions are not suitable for all devices
 - Can be forged to send malicious data
 - Vulnerable to replay attacks

•

- Solution: Identify devices based on their unique signatures
 - Transmitted signal has unique signatures due to hardware imperfections

Siamese neural network selected based on its performance*

The network was trained with 110 training devices.

Evaluated with rogue device selected from 26 devices (similar chipset) and 28 devices (different chipsets)

The model was quantized to 8-bit to prepare it for efficient acceleration. The precision degradation was acceptable.

ຳmsys

Background:

Wittra Tool Lock is used to track and manage (lock/unlock) equipment for safe handling on construction sites.

Goal:

Use ML to classify estimates of the distance between a Tag and a Positioning Beacon (PB) to achieve better positioning

Problem:

Solution:

Result:

Conclusion and future work:

- In some cases, ML outperformed WiPE. ML is not far from WiPE classification despite only a small amount of data.
- Improvements to the existing design to include more inputs to better train the ML model

Conclusions ...

۹msys

Next steps, and reflections

- The project ends in 6 months evaluation of use-cases ongoing
- High value but challenging to work with both hardware (CPU and AI accelerator) and software tools and use-cases simultaneously (had some delivery issues with FPGA manufacturer)
 - Long projects 24+ months is needed!
- We are interested in continuing to work with both the existing use cases and expanding into use cases with a need for energyefficient and protected AI models in embedded / physical products (not necessarily in an IoT Gateway)
- Interested? get in touch!
 - Joakim Eriksson, joakim.eriksson@ri.se
 - Dag Helmfrid, dag.helmfrid@imsystech.com or Mohammad Riazati, mohammad.riazati@imsystech.com

