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Smart and Secure loT Gatway

* Project Duration 2021-07-01 — 2023-12-31

* Partners

RISE - project lead and use-case provider: loT — wireless device
fingerprinting

Uppsala University — research and development of security
mechanisms for the Al accelerator

Imsys — design and implementation of secure Al accelerator

loT Bridge — loT company — use-case provider:
Bridge Safety loT application using the Al accelerator

Wittra — loT company — use-case provides:
Secure |oT for asset tracking and asset lock system

*  Main contribution

Imsys

Smart and Secure loT Gateway based on Imsys Alice Al-accelerator
Use-cases evaluating Imsys Al accelerator
Energy-efficient Al at the extreme edge
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Al Acceleration in
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Imsys take on Al
acceleration
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Why inference at the edge?

Self-Contained (mission criticality)
Resource restricted
Fast response

Lot of data

Imsys

Al in smart sensors or aggregation point
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High throughput, 10 TOP/S
Energy efficiency, 4 TOP/)

Scalable and programmable



Alice Accelerator Platform Architecture

* Many-Processor Architecture
*  Processing Element Clusters
*  Shared memory
* 16 Processing Elements each with 8 MAC units.
*  Network on chip
*  High speed transport between I/0 and PEC
*  Data exchange between PECs

o

*  Prepared for tiling and inclusion in a system on chip M
*  Tools support to avoid the use of caches. Deep
* The General-Purpose Processor Neural
*  Sequences the model execution Network
. Us!ng the Deep Neural Network Instr.uct|.0n Set of the PEC Instruction
*  Using the NoC data transport and switching capabilities. Set
*  The GPP can act in cooperation with a system processor in a host system, e
like the Secure GW, or manage the whole application on a smart sensor. (|SA_A)
|/0 . . GPP: General-Purpose Processor
*  External memory and highspeed interfaces (PCle, USB4.0, etc.) EM: Energy Manager
PEC: Processing Element Clusters
¢ Energy Mmanager (EM) ISA-A: Instruction Set Architecture for Accelerators
*  Sleep modes
«  Performance (Supply voltage versus clock speed) The accelerator in this project
+  External power source (Manage energy bursts for battery operated devices) * Accelerator on Simulator and Emulator made available.
* Security architecture introduced.
* Firmware to execute application models efficiently upgraded.
Imsys

e Automation tools for model implementation adapted.



The Imsys Accelerator Design for Low energy

Don’t move data around
Accelerator Challenges - Automated tools for data flow analysis
* Data Movement: Get parameters + acti\gtlenffrgm—ll%ATVI— TS < _ Cache—less Memory access
* Data movement is expensive ¢ “Action | Energy ___[Relative | y
* Energy, latency, bandwidth / ALU op 1pJ-4pl 1x \ - Data reuse
* You need data to compute / SRAM Read 5pl-20pl 5% \ . Quantized models
Move 10mm across 26 pJ -44 pJ 25x il - PI’OCESSIHg nea r memory proved to have same
: ] I chip | precision to less than a
* Focus on data locality \ Send to DRAM 200p)-800p) 200 ’ quarter of the energy.
\ ead from image 2nl-4n ,000x o o o
N e MM, Efficient processing ®
External RAM <> Host Processor N\ Send over LTE 50 uJ -600 uJ 50,000}0& . . . Py
TR E —— Se _- - Lean data types (uint8 most efficient)
e T - Low power circuit design matching architecture
A4 Buffer |
W D) and advanced technology nodes” for system on

chip implementation.
DSD 2018 AMDL Keynote, Prof. Dr. Henk Corporaal

Sources of energy consumption challenging the system solution

Automated application optimization
- Minimize memory usage & maximize utilization
- Layer fusion, zero pruning, operator fusion, ...

Imsys

* Synthesized on Global Foundries 22nm FDX process



SecureGW
demonstrator
platform
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Optimizer, Compiler, and Runtime

* Supports development flow from inference . Q @ m
model graph to optimized target object code, |

which is used by the GPP to execute the

model | € ONNX
Compiler
e Quantization support Ak
* Training aware e N [ )
e Post training Debugger \S'mUIator )
Frontend p §
S < | Emulator (Runtime)
* Customizable optimization 4 AN )
. mimalin - Analyzer | meemmmmmmmmm e e
pipelining, layer fusing, memory usage ... (P =’A - \:
N T L)

 Seamlessly integrates with existing Al
development frameworks

Accelerator on pre-production chip in follow-u
imsys =lerator on pre-production chip g
project for interested participants



SDK for extending the DNN Instruction set (ISA-A)

ISA-A:
e |nstruction Set Architecture for Accelerators
* Library of instructions

* Extensive instructions for quantized neural
network operations
and other kernel-based operations, e.g., FFT

* Programmable user customization

* The project’s three validation use-cases has
resulted in new optimizations and kernel library
extensions.

Imsys

Microcode
Compiler
uSimulator
uDebugger
Emulator
HAnalyzer
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Verification of models
* Simulated in floating point and quantized to 8-bit integers
* Different configurations 1, 4 and 16 clusters

* Different optimizations analyzed

Imsys




Emulator + Application use-cases on HW

Available on FPGA

board
Application =~~~ " ossiie | ‘
v’ Presentation and input on Host PC T | » Host PC
 applications
_______________ A
Processing elements EPGA board IIO bus | 1000Base-T |Pee
v' 4 PEC configuration. (64 PE = ~150 GOP/s) [ FMC connector | [ Ry4S | ST
v Micro coded DNN operations (ISA-A firmware) Y P*LY
v Full stack SW on GPP (IM4000) Y - PCle
FPGA SGMIl
Security DRA‘I(/I iff SGMII‘-'RGMII PCle ir:;erface
Xilinx IP Xilinx IP Xilinx IP
v" SecureGW memory protection HW for secure and ) ) )
performant high-speed memory accesses —— i,RGM" o
Mem. Prot. 1M(ZbCE i NoC i
High-speed data transfer } L——@q"’l%t—"—r--a'
/ DRAM \ 4 :t A\ 4 y ::
v’ Ethernet [ im40001/0 ] NGC
IM4000 Work ::Port 0 tPort &
Core memory rec | [ PEC
Imsys IP scope #0 "3
imsys




Security solution demonstrated in SecureGW

Secure Accelerator Memory (DDR):
-Confidentiality: AES Encryption

Integrity: Hash-based Message Authentication Codes (SHA3 HMACs)

o—————
I DDR N 1 SecureGW

1 Mem. prot.
\ v !

g
S

SecureGW approach:

* Large Securable Objects (LSO): AES & HMACs
per large objects (e.g., tensor fragments or
whole tensors)

* Tailored to the Alice memory access patterns
* Eliminates (almost all) memory overhead

* Is fully pipelined (latency only at beginning &
end of the LSO read)

* General random access to blocks (parts of an
LSO) is also supported, with 25% memory
overhead.

TCP/IP

* Same HW for read and write
* on the FPGA demonstrator platform
* but programmed differently.
* Confidentiality
* ensures even if data is stolen it is secure.
* Integrity
» checks for any changes in the data
during transit.
* We know that what we read is what we
wrote.



SecureGW Design: Integrity

Memory Security in SecureGW is based on LSOs; HMAC generation/validation
optimized for this case; Process can be fully pipelined for large objects.

LSO Write (create HMAC)

Encryption AES and Hash(Encrypt then Hash)

Accelerator

Addr

6593
6592

6591

Plaintext 1/3
Plaintext 2/3
Plaintext 3/3

AES Key

° Objects Descriptor

6593 Ciphertext 1/3
6592 Ciphertext 2/3
6591 Ciphertext 3/3
Associate Hash
to Object
Secure Boundary Internal
External
DRAM(Data)

LSO Read (validate HMAC)

Decryption AES and Hash Validation(Encrypt then Hash)

DRAM(Data)
""""""""" Addr
6593 Ciphertext 1/3
6592 Ciphertext 1/3
6591 Ciphertext 1/3

CTR

Encryption
Ensemble

Addr
6593
6592
6591

Plaintext 1/3
Plaintext 2/3
Plaintext 3/3

Hashing
Ensemble

AES Key e

Accelerator

Hash Computed
Hast Hash

Validate Hash

zero memory overhead: LSO Secure Hashes stored inside
secure boundary (~ #objects)

"""" llnternal

Pipelined Hash Ensemble Engine

(3 x dual-64bit cores)

—Data—>| Logic

Pipeline

Hash Core

128 bit

’—P Hash Core

64 bit
128 bit: Split
64 bit

\—P Hash Core

128 bit

Hash Core

Obijects Descriptor

Write

Read

Authentication
(Compare New vs
old)
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Pipelining diagrams

latency at start and end of a long read)
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loT authentication application

Physical Layer

Wireless Identification
Link

A VVALVAVYALVIRRN (%))

Malicious NODE /\/\/V\/\/\/V\/

Wireless loT Gateway
Link

Identifying Rogue Devices

Similar Chipset Different Chipset

*  Problem: Complex cryptographic solutions are not suitable for all devices
» Can be forged to send malicious data
*  Vulnerable to replay attacks

* Solution: Identify devices based on their unique signatures
*  Transmitted signal has unique signatures due to hardware

. f t.
1D Convolution 1D Convolution 1D Convolution 1D Convolution Dense
Input Batch Batch eRest Batch Batch | | Batch | |
Siice Notos = 128 DR Notos = 256 B3R Niters = 256 Notors = 128 N
Kernel Size = 8 Kemel Size=4 | | | | Kemel Size=4 Kernel Size = 4 nevrens
) Dense N
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Siamese neural network selected based on its performance*

The network was trained with 110 training devices.
Evaluated with rogue device selected from 26 devices (similar chipset) and 28

Regular Quantized Regular Quantized
Inference Inference

More Precision degradation with different chipsets

Imsys

devices ( different chipsets)
The model was quantized to 8-bit to prepare it for efficient acceleration.
The precision degradation was acceptable.

* PLIO: Physical Layer Identification using One-shot Learning | IEEE Conference Publication | IEEE Xplore



https://ieeexplore.ieee.org/document/9637747

Background:

Wittra Tool Lock is used to track and manage Result: N | | A | | |
(lock/unlock) equipment for safe handling on ol WiPE
. . - ,. | ' L
construction sites. AR 1
Goal: E A
Use ML to classify estimates of the distance between 5, 1
a Tag and a Positioning Beacon (PB) to achieve better 5. A ‘
- . ‘i = { | [ | )
positioning - I
Problem: g [ A '.
z A | ".
PB . ¢ |
° ° ® \w=3laxt-n) | / ' ' \
/Los
e e oo " s w s =™ ®m w»  ®
rl v%alue that contains the .pathloss and angle Tag D
. r2“'\‘v , . ILnlng;eLn:Tber atmultinaths Comparison of rage estimates prediction by ML model and existing WIPE system
F3, 7 .
Conclusion and future work:
Solution: _ _
e In some cases, ML outperformed WIPE. ML is not far
g o et rate) | | KnoWN locations of the PBs from WIPE classification despite only a small amount
o v of data.

Improvements to the existing design to include more

WIPE inputs to better train the ML model

ML

4
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Next steps, and reflections

* The project ends in 6 months — evaluation of use-cases ongoing

* High value but challenging to work with both hardware (CPU and Al accelerator) and software tools and use-cases simultaneously
(had some delivery issues with FPGA manufacturer)
* Long projects 24+ months is needed!

* We are interested in continuing to work with both the existing use cases and expanding into use cases with a need for energy-
efficient and protected Al models in embedded / physical products (not necessarily in an loT Gateway)

* Interested? — get in touch!
* Joakim Eriksson, joakim.eriksson@ri.se

* Dag Helmfrid, dag.helmfrid@imsystech.com or Mohammad Riazati, mohammad.riazati@imsystech.com

PN RI.
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