AI FACTORY /MINING MOBILE MACHINERY

Project Overview

Sweden's Innovation Agency

[ramin.karim@ltu.se]

2023-05-26

RAMIN KARIM

Factory

- LTU, Div. of Operation & Maintenance Engineering
- Professor of Industrial AI & eMaintenance
 - Computer science & Data Science
 - Operation & maintenance
- Director of the 'Centre of Intelligent Asset Management (CIAM)' at LTU
- Founder of Predge AB (former eMaintenanance365 AB)
 - 2 times on the Swedish "33-listan"
- Scientific leader of the 'ePilot' project, listed on IVA 2020
- Scientific leader of the 'AI Factory', listed on IVA 2021
 - RAILWAY, MINING, MANUFACTURING, CONTRUCTION, AVIATION, ...
- Board member of 'Sustainability Circle'
- Board member 'Association of Swedish Maintenance (SvensktUnderhåll)'
- >20 years of industrial experience

Our research is included in IVA's 100 List 2020, a list of research projects focusing on sustainability with significant potential to benefit areas such as business and method development or to have a positive impact on society.

Our research is included in **IVA's 100 List 2021** listing research projects focusing on **sustainable emergency preparedness** with potential to create value through innovation.

EXAMPLES OF MACHINES IN OPERATION AT LKAB & BOLIDEN

Enable sustainable asset management of mining mobile machines by utilisation of AI and digital technologies

HOW WE DO - OBJECTIVE

Develop and demonstrate a digital twin aimed for nowcasting and forecasting of machines' health

- 1. What happened in the past
- 2. Why something happened
- 3. What will happen in the future
- 4. What needs to be done next (Not within the scope of the project)

WHAT WE DO - THE PLATFORM

A Multi-Space environment (a Metaverse) for Intelligent Asset Management

AIFM - PROJECT SCOPE

- AIFM will focus on mining machines developed by Epiroc and operated by LKAB and Bolide
 - LKAB (underground environment)
 - Boliden (underground & open pit environment)

- The project will have a special focus on the components that are identified as critical and significantly impact the system availability
 - Based on the failure analysis phase

AIFM - PHASES

- Phase I: Descriptive analysis
 - Investigate the failure rate for addressed components
 - Identify the failure modes per components

- Phase II: Diagnostics
 - Identify the root-cause per failure mode (reversed FMECA)
 - Data-driven approach
- Phase III: Prognostics
 - Hybrid approach
 - Develop data-driven and physics-based models for RUL estimation

AIF/M - USE CASES

UC01: Digital Twin for Decision-Support in Asset Management of mobile machinery **Focus: Process Development** Asset management decision process Maintenance & inspection **Nowcasting & Forecasting** Safety & Security Condition monitoring Logistics LiDAR data processing Smart object recognition & Data exchange automatior VR-visualisation of model AR-visualisation of model LiDAR data processing Smart object recognition UC04: Robotic & Sensor Integration UC02: Data Source Integration UC03: AR, VR Integration tagging tagging UC06: Cybersecurity Spot integration Sensor integration (LIDAR) 3D-model generation Gaming technology integration

WP 0: Management, coordination and quality assurance

WP 2: Initiation and establishment of WP 1: System definition WP5: Demonstration technology platform verification WP3: Data and model integration WP4: AI development

WP6: Dissemination and communication

AIF/M - MICRO-SERVICE-BASED ARCHITECTURE

DATA SOURCES FOR ANALYTICS

Operation environment data (topology etc.)

Reliability data (from design, e.g. life expectancy per component)

AIF/M - COGNITIVE CAPABILITIES

Business

Pay-as-you-go Service or product Micro or macro transactions

Quality

Quality-of-Service (QoS) Quality-of-Data (QoD) Quality-of-Model (QoM)

Integration

Services Messaging Orchestration

Governance

Digital asset Ownership, IP Freedom-To-Operate

Distribution

Computing Storage Model

Democratisation

Data & model Availability Accessibility

Information Assurance

Security Safety Resilience

Autonomy

Reasoning Acting Automation

15

AI FACTORY – DEVELOPMENT ENVIRONMENT PLATFORM

Architecture

- Service-oriented architecture
- Micro-services

Development tool

- OpenAl
- Azure
- Python, C#

Storage

- Blob
- Sql
- Graph

Visualisation

- Browser-based
- Power BI
- Unity
- AR (Hololens)
- VR (Quest II & Pro)

Cloud environment

– Azure

Fog environment

- Windows
- Linux

Edge environment

- Epiroc Certiq
- Azure IoT

THANK YOU FOR YOUR ATTENTION!

